
Physics 137B (Professor Shapiro) Spring 2010

GSI: Tom Griffin

Homework 5 Solutions

1. (a) By the variational method E(c2) :=
< φ0|H|φ0 >

< φ0|φ0 >
is an upper bound

for the energy of the ground state.

< φ0|φ0 > =

∫ ∞
−∞
|φ0|2dx

=

∫ c

−c
(c2 − x2)4dx

=

∫ c

−c
(c8 − 4c6x2 + 6c4x4 − 4c2x6 + x8)dx

= (c8x− 4c6x3/3 + 6c4x5/5− 4c2x7/7 + x9/9)|x=c
x=−c

= 2(c9 − 4c9/3 + 6c9/5− 4c9/7 + c9/9)

=
256c9

315

< φ0|
1

2
mω2x2|φ0 > =

1

2
mω2

∫ ∞
−∞

φ∗0x
2φ0dx

=
1

2
mω2

∫ c

−c
(c2 − x2)4x2dx

=
1

2
mω2

∫ c

−c
(c8x2 − 4c6x4 + 6c4x6 − 4c2x8 + x10)dx

=
1

2
mω2(c8x3/3− 4c6x5/5 + 6c4x7/7− 4c2x9/9 + x11/11)|x=c

x=−c

=
1

2
mω22(c11/3− 4c11/5 + 6c11/7− 4c11/9 + c11/11)

= mω2 128c11

3465
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< φ0|
−h̄2

2m

d2

dx2
|φ0 > =

−h̄2

2m

∫ ∞
−∞

φ∗0
d2

dx2
φ0dx

=
h̄2

2m

∫ ∞
−∞
|dφ0

dx
|2dx (integrating by parts)

=
h̄2

2m

∫ c

−c
[−4x(c2 − x2)]2dx

=
h̄2

2m

∫ c

−c
[16x2(c4 − 2c2x2 + x4)]dx

=
h̄2

2m

∫ c

−c
(16c4x2 − 32c2x4 + 16x6)dx

=
h̄2

2m
(16c4x3/3− 32c2x5/5 + 16x7/7)|x=c

x=−c

=
h̄2

2m
2(16c7/3− 32c7/5 + 16c7/7)

=
h̄2

m

128c7

105

So we have that:

E(c2) :=
< φ0|H|φ0 >

< φ0|φ0 >

=
h̄2

m
128c7

105
+mω2 128c11

3465
256c9

315

=
h̄2

m

3

2c2
+mω2 c

2

22

This is an upper bound for the ground state energy for every value of
c2. To find the lowest upper bound we need to find the minimum of
this function.

dE(c2)

d(c2)
= − h̄

2

m

3

2c4
+
mω2

22
= 0

h̄2

m

3

2c4
=

mω2

22

c4 =
h̄2

m

33

mω2

c2 =
h̄

mω

√
33
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Then the minimum value of E(c2) is:

Emin = E(
h̄

mω

√
33) = h̄ω(

3

2
√

33
+

√
33

22
)

= h̄ω

√
33

11
≈ 0.522h̄ω

Therefore the ground state energy must be less than 0.522h̄ω.

(b) The true ground state of the harmonic oscillator is ψ0(x) = ( α√
π
)1/2e−α

2x2/2

which is an even function of x. But φ1(x) = xφ0(x) is an odd function
in x. Thus < φ1|ψ0 >=

∫∞
−∞ φ1(x)ψ0(x)dx is the integral of an odd

function and thus is zero. So ψ1(x) is a suitable trial function for the
first excited state. Then we have

< φ1|φ1 > =

∫ ∞
−∞
|φ1|2dx

=

∫ c

−c
x2(c2 − x2)4dx

=

∫ c

−c
(c8x2 − 4c6x4 + 6c4x6 − 4c2x8 + x10)dx

= (c8x3/3− 4c6x5/5 + 6c4x7/7− 4c2x9/9 + x11/11)|x=c
x=−c

= 2(c11/3− 4c11/5 + 6c11/7− 4c11/9 + c11/11)

=
256c11

3465

< φ1|
1

2
mω2x2|φ1 > =

1

2
mω2

∫ ∞
−∞

φ∗1x
2φ1dx

=
1

2
mω2

∫ c

−c
(c2 − x2)4x4dx

=
1

2
mω2

∫ c

−c
(c8x4 − 4c6x6 + 6c4x8 − 4c2x10 + x12)dx

=
1

2
mω2(c8x5/5− 4c6x7/7 + 6c4x9/9− 4c2x11/11 + x13/13)|x=c

x=−c

=
1

2
mω22(c13/5− 4c13/7 + 6c13/9− 4c13/11 + c13/13)

= mω2 128c13

15015
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< φ1|
−h̄2

2m

d2

dx2
|φ1 > =

−h̄2

2m

∫ ∞
−∞

φ∗1
d2

dx2
φ1dx

=
h̄2

2m

∫ ∞
−∞
|dφ1

dx
|2dx (integrating by parts)

=
h̄2

2m

∫ c

−c
(5x4 − 6c2x2 + c4)2dx

=
h̄2

2m

∫ c

−c
(25x8 − 60c2x6 + 46c4x4 − 12c6x2 + c8)dx

=
h̄2

2m
(25x9/9− 60c2x7/7 + 46c4x5/5− 12c6x3/3 + c8x)|x=c

x=−c

=
h̄2

2m
2(25c9/9− 60c9/7 + 46c9/5− 12c9/3 + c9)

=
h̄2

m

128c9

315

So we have that:

Ẽ(c2) :=
< φ1|H|φ1 >

< φ1|φ1 >

=
h̄2

m
128c9

315
+mω2 128c13

15015
256c11

3465

=
h̄2

m

11

2c2
+mω2 3c2

26

This is an upper bound for the first excited state energy for every value
of c2. To find the lowest upper bound we need to find the minimum of
this function.

dẼ(c2)

d(c2)
= − h̄

2

m

11

2c4
+

3mω2

26
= 0

h̄2

m

11

2c4
=

3mω2

26

c4 =
h̄2

m

143

3mω2

c2 =
h̄

mω

√
143

3
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Then the minimum value of Ẽ(c2) is:

Ẽmin = Ẽ(
h̄

mω

√
143

3
) = h̄ω(

11
√

3

2
√

143
+

3
√

143

26
√

3
)

= h̄ω

√
3× 143

13
≈ 1.593h̄ω

Therefore the first excited state energy must be less than 1.593h̄ω.

2. The infinite square well has energy eigenvalues En = αn2/m corresponding

to the one-particle energy eigenstate ψn(x) =
√

2
L

sin(nπx
L

), where n is a

positive integer and α := h̄2π2

2L2

(a) In this problem there are two identical neutrons (call these particles
1 and 2) and one proton (call this particle 3). The ground state of
the combined system will correspond to all three particles in the one-
particle square well n=1 level, giving total energy E = α(2/mn+1/mp)
(we will see that this state is allowed by considering the symmetrization
properties in what follows). There is only one proton, so it does not
need to satisfy any particular symmetrization. The proton can have
spin up or down (2 possible states). The neutrons on the other hand
must have an antisymmetric wavefunction under interchange of the two
neutrons. If they are in the same spatial state (the ground state) of the
infinite square well, their spatial wavefunction can only be symmetric.
The neutrons must then have spins in the (antisymmetric) singlet state
in order to make their total wavefunction antisymmetric (1 possible
state). Thus the degeneracy of the ground state is 2, with the ground
state space having a basis:

|ψ1 >1 |ψ1 >2 |ψ1 >3
1√
2
(| ↑>1 | ↓>2 −| ↓>1 | ↑>2)| ↑>3

|ψ1 >1 |ψ1 >2 |ψ1 >3
1√
2
(| ↑>1 | ↓>2 −| ↓>1 | ↑>2)| ↓>3

Each of these states is clearly antisymmetric under the interchange of
the two neutrons (particles 1 and 2).

The first excited state of the combined system will have two particles
in the square well n=1 level and one particle in the n=2 level. The
neutron has a larger mass than the proton so it will be of lower energy
to put one of the neutrons in the n=2 level (rather than the proton).
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So the energy of the first excited state will be E = α(5/mn + 1/mp).
Therefore, one of the neutrons is in the n=2 level with the other in
the n=1 level and we can form either a symmetric or antisymmetric
spatial state for the neutrons and combine it with an antisymmetric or
symmetric neutron spin state respectively. The proton, meanwhile, is
in the n=1 level and can have spin either up or down. So we have the
following states:

1√
2
(|ψ1 >1 |ψ2 >2 +|ψ2 >1 |ψ1 >2)|ψ1 >3

1√
2
(| ↑>1 | ↓>2 −| ↓>1 | ↑>2)| ↑>3

1√
2
(|ψ1 >1 |ψ2 >2 +|ψ2 >1 |ψ1 >2)|ψ1 >3

1√
2
(| ↑>1 | ↓>2 −| ↓>1 | ↑>2)| ↓>3

1√
2
(|ψ1 >1 |ψ2 >2 −|ψ2 >1 |ψ1 >2)|ψ1 >3 | ↑>1 | ↑>2 | ↑>3

1√
2
(|ψ1 >1 |ψ2 >2 −|ψ2 >1 |ψ1 >2)|ψ1 >3 | ↑>1 | ↑>2 | ↓>3

1√
2
(|ψ1 >1 |ψ2 >2 −|ψ2 >1 |ψ1 >2)|ψ1 >3

1√
2
(| ↑>1 | ↓>2 +| ↓>1 | ↑>2)| ↑>3

1√
2
(|ψ1 >1 |ψ2 >2 −|ψ2 >1 |ψ1 >2)|ψ1 >3

1√
2
(| ↑>1 | ↓>2 +| ↓>1 | ↑>2)| ↓>3

1√
2
(|ψ1 >1 |ψ2 >2 −|ψ2 >1 |ψ1 >2)|ψ1 >3 | ↓>1 | ↓>2 | ↑>3

1√
2
(|ψ1 >1 |ψ2 >2 −|ψ2 >1 |ψ1 >2)|ψ1 >3 | ↓>1 | ↓>2 | ↓>3

Therefore the degeneracy of the first excited state is 8.

(b) We again have three particles, 2 π0 (particles 1 and 2) and one π+

(particle 3). The pions are bosons so we need to make sure that the
wavefunctions are symmetric under the interchange of identical pions.
For the ground state we can put all pions in the n=1 level:

|ψ1 >1 |ψ1 >2 |ψ1 >3

This is symmetric under interchange of particles 1 and 2, has energy
E = α(2/mπ0 + 1/mπ+) and degeneracy 1.

Since the π+ is heavier than the π0, the n=2 level of the π+ has lower
energy than that of the π0. The first excited state will thus have the
π+ in the n=2 level and the two π0s in the n=1 level.

|ψ1 >1 |ψ1 >2 |ψ2 >3

So the first excited state has energy E = α(2/mπ0 +4/mπ+) and degen-
eracy 1.

(c) Two identical particles (one with spin up and one with spin down) can
be put in each level of the square well. Therefore, of the five neutrons,
two can be placed in n=1, two in n=2 and one in n=3. Of the three
protons, two can be placed in n=1 and one in n=2. This gives a total
energy for the ground state of

E = α((2×12 +2×22 +32)/mn+(2×12 +22)/mp) = α(19/mn+6/mp).
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(d) All eleven pions can be put in the n=1 level, so the ground state energy
is E = α(8/mπ0 + 3/mπ+).

NOTE: for this question, some students assumed that the neutron and proton
were equal in mass (and also that the π0 and π+ had equal mass), and this
is approximately true. This would change the degeneracies obtained above.
I did not penalise students for making this assumption.

3. The totally antisymmetric state of three fermions is:

|Ψ > =
1√
3!

∣∣∣∣∣∣
|α >1 |β >1 |γ >1

|α >2 |β >2 |γ >2

|α >3 |β >3 |γ >3

∣∣∣∣∣∣
=

1√
6

(|α >1

∣∣∣∣ |β >2 |γ >2

|β >3 |γ >3

∣∣∣∣− |β >1

∣∣∣∣ |α >2 |γ >2

|α >3 |γ >3

∣∣∣∣+ |γ >1

∣∣∣∣ |α >2 |β >2

|α >3 |β >3

∣∣∣∣)
=

1√
6

(|α >1 |β >2 |γ >3 −|α >1 |γ >2 |β >3 −|β >1 |α >2 |γ >3

+|β >1 |γ >2 |α >3 +|γ >1 |α >2 |β >3 −|γ >1 |β >2 |α >3)

4. (a) Using the ultra-relativistic expression EF = h̄ckF = h̄c(3π2ρ)1/3 and
approximating the kinetic energy as NEF (correct up to a numerical
factor), equation 10.51 of the text is replaced by:

ET = EK + EP ≈ Nh̄c(3π2ρ)1/3 − 3

5

GM2

R

≈ Nh̄c

(
3π2 Zd

AMp

)1/3

− 3

5

GM2

R
(using ρ ≈ Zd/(AMp))

≈ ZM

AMp

h̄c

(
3π2 3ZM

(4πR3)AMp

)1/3

− 3

5

GM2

R

(using N ≈ ZM/(AMp) and d = M/(4πR3/3))

=
bM4/3

R
− 3

5

GM2

R
where b =

(
3

2

)2/3

h̄c
π1/3

M
4/3
p

(
Z

A

)1/3
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In fact there is a mistake in the statement of this question: stability is
NOT associated with ET ≤ 0. If bM4/3 ≤ 3

5
GM2 then ET ∼ − 1

R
and

thus the star will collapse (minimum energy at R = 0). In this case
ET ≤ 0 and the star is certainly not stable. Conversely, if bM4/3 ≥
3
5
GM2 then ET ∼ 1

R
and the star will expand to larger values of R until

the electrons become non-relativistic. In this case the white dwarf will
be stable. So stability requires:

bM4/3 ≥ 3

5
GM2

M2/3 ≤ 5b

3G

M ≤
(

5b

3G

)3/2

Therefore the critical mass, above which the star is unstable, is

Mc =

(
5b

3G

)3/2

=
53/2π1/2

2× 31/2

(
h̄c

G

)3/2(
Z

AMp

)2

(this is known as the

Chandrasekhar limit).

(b) When a white dwarf star collapses, inverse beta decay can convert the
electrons and protons to neutrons, leaving behind a neutron star. The
neutrons then form a fermi gas. The calculation for Chandrasekhar
limit is then identical to part (a), except now Z = 1 (since trivially
there is one neutron per neutron “nucleus”), A = 1 and Mp → Mn, so

Mc =
53/2π1/2

2× 31/2

(
h̄c

G

)3/2
1

M2
n

.

5. To calculate the integrals, note the following standard integral:∫ ∞
0

rne−κrdr =
n!

κn+1
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< φ| − h̄2

2m
∇2

1|φ > = − h̄2

2m

1

π2

( λ
a0

)6
∫
d3r1

∫
d3r2e

−λ(r1+r2)/a0
(

1
r21

∂
∂r1

(r2
1
∂
∂r1
e−λ(r1+r2)/a0)

)
= − h̄2

2m

1

π2

( λ
a0

)6
∫
d3r1

∫
d3r2e

−λ(r1+r2)/a0
(

1
r21

∂
∂r1

(r2
1(−λ

a0
)e−λ(r1+r2)/a0)

)
= − h̄2

2m

1

π2

( λ
a0

)6

(4π)2

∫ ∞
0

dr1r
2
1

∫ ∞
0

dr2r
2
2( 1
r21

(2r1(−λ
a0

)

+r2
1(−λ

a0
)2)e−2λ(r1+r2)/a0

= −8h̄2

m

( λ
a0

)6
∫ ∞

0

dr1(2r1(−λ
a0

) + r2
1(−λ

a0
)2)e−2λr1/a0

∫ ∞
0

dr2r
2
2e
−2λr2/a0

= −8h̄2

m

( λ
a0

)6

(−( a0
2λ

)− ( a0
2λ

))
(
2!(a0/2λ)3

)
=

h̄2

2m

( λ
a0

)2

=
e2

4πε0

λ2

2a0

< φ| 1
r1

|φ > =
1

π2

( λ
a0

)6
∫
d3r1

∫
d3r2

1

r1

e−2λ(r1+r2)/a0

=
1

π2

( λ
a0

)6

(4π)2

∫ ∞
0

dr1r
2
1

∫ ∞
0

dr2r
2
2

1

r1

e−2λ(r1+r2)/a0

= 16
( λ
a0

)6
∫ ∞

0

dr1r1e
−2λr1/a0

∫ ∞
0

dr2r
2
2e
−2λr2/a0

= 16
( λ
a0

)6( a0

2λ

)2

2!
( a0

2λ

)3

=
λ

a0

By symmetry, we have the equivalent expressions for r2:

< φ| − h̄2

2m
∇2

2|φ > =
e2

4πε0

λ2

2a0

< φ| 1
r2

|φ > =
λ

a0

Finally, as is calculated in detail in equations 10.74 to 10.81 of the text (now
with λ replacing Z in the calculation):

< φ| e2

4πε0r12

|φ > =
5e2λ

8(4πε0)a0
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So:

< φ|H|φ > = < φ| − h̄2

2m
∇2

1|φ > + < φ| − h̄2

2m
∇2

2|φ > −
Ze2

4πε0
< φ| 1

r1

|φ >

− Ze
2

4πε0
< φ| 1

r2

|φ > + < φ| e2

4πε0r12

|φ >

=
e2

4πε0

λ2

2a0

+
e2

4πε0

λ2

2a0

− Ze2

4πε0

λ

a0

− Ze2

4πε0

λ

a0

+
5e2λ

8(4πε0)a0

=
(
λ2 − 2Zλ+

5λ

8

) e2

(4πε0)a0
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